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ABSTRACT 

A conceptual design study titled Deep-space Optical Terminals was recently completed for an optical communication 
technology demonstration from Mars in the 2018 time frame. We report on engineering trades for the entire system, and for 
individual subsystems including the flight terminal, the ground receiver and the ground transmitter. A point design is 
described to meet the requirement for greater than 0.25 Gb/s downlink from the nearest distance to Mars of 0.42 AU with a 
maximum mass and power allocation of 40 kg and 110 W. Furthermore, the concept design addresses link closure at the 
farthest Mars range of 2.7 AU. Maximum uplink data-rate of 0.3 Mb/s and ranging with 30 cm precision are also addressed.  

1. INTRODUCTION 

Optical communications has been identified as an emerging technology for providing a high-rate data-return service for NASA 
missions from lunar distances to throughout the solar system and beyond [1]. Deep space mission conditions cannot be fully 
emulated with near-Earth spacecraft carrying lasercom systems; therefore, for full mission acceptance precursor 
demonstrations are deemed necessary.  Key among these conditions are large point-ahead angles, round-trip light times, and 
the simultaneous low Sun-Probe-Earth (SPE) and Sun-Earth-Probe (SEP) angles that result in low signal-to-noise ratios for 
both the optical transmit and receive stations.  Moreover, the huge interplanetary distances call for aggressively efficient (high 
bits/photon) modulation and coding strategies that result in requiring high peak-to-average power laser transmitters that are 
unproven in the space environment.  

In 2003 NASA initiated the Mars Laser Communication Demonstration (MLCD) Project, which progressed through a 
successful preliminary design review but was aborted in mid-2005 due to cancellation of the host spacecraft [2,3]. In 2009, the 
Deep-space Optical Terminals (DOT) study was initiated with a key objective of demonstrating an order of magnitude higher 
downlink data rate with a flight terminal mass and power comparable to current NASA deep-space telecom systems. The 
primary motivation for augmenting NASA’s telecommunication data-rates is to enhance the science data volume returned 
from higher resolution instruments, and prepare for future human deep-space exploration missions [4]. The Deep-space 
Optical Terminals (DOT) concept design study targets the first deep-space opportunity that becomes available for 
demonstrating bidirectional lasercom between Earth and deep space. 
 
The DOT system is composed of four major subsystems, as shown in Figure 1: 

1. The DOT Mission Operations Center (MOC) controls DOT operations and performs data analysis and archiving; 
2. The Ground Laser Transmitter (GLT) sends an uplink beam to the spacecraft [5]. The uplinked beam is used as a 

pointing reference (i.e., beacon) at the spacecraft, as well as, for transmitting uplink data.  
3. The Flight Laser Transceiver (FLT) is the DOT subsystem mounted on the spacecraft that receives the uplink beacon 

and transmits a downlink beam [6]; and  
4. The Ground Laser Receiver (GLR) receives the downlink light and recovers the communication data.  

 
2. SYSTEMS ENGINEERING 

  
The DOT study was conducted without a specific host spacecraft. Instead, reasonable assumptions for a deep-space spacecraft 
were made in developing the concept design. The spacecraft platform disturbance is a key driver influencing the design of the 
challenging laser beam pointing control assembly. Disturbance power spectral densities from past spacecraft such as Olympus, 
Cassini, Spitzer, and OICETS were studied as elaborated in Ref. 7. An enveloping disturbance spectrum was derived as a 
guideline for the FLT design. This resulted in an angular power spectral density (PSD) of 1E-7 rad2/Hz at and below 0.1 Hz; 
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power efficiency at the targeted operating regime, and low implementation complexity [8]. The PPM orders were determined 
by data-rate requirements and peak power limitations of the laser transmitter, which limits the maximum supportable PPM 
order. For DOT the maximum PPM order was 128. To maintain a low implementation risk for the flight avionics a minimum 
slot width of 0.5 ns was chosen. Candidate error correction codes (ECC) focused on modern, iteratively decoded codes, which 
provide high power efficiency. The serially concatenated PPM (SCPPM) encoding was baselined for the optical downlink. 
SCPPM in conjunction with photon-counting direct-detection receiver has been demonstrated to achieve communications 
performance within 1 dB of theoretical limits [9]. Table 1 summarizes the DOT downlink and uplink signaling trades. 

 

 Table 1. Summary of DOT signaling trades. 

 
   
Uplink Signaling Trades: The uplink signaling functions are: providing a reference beacon; aiding synchronization; 
supporting a low-rate command capability for near-real-time link control; transmitting high-rate uplink data at near Mars 
ranges; and supporting ranging. DD-PC is again selected from a consideration of photon-efficiency and the relatively high 
bandwidth that photon-counting detectors can afford for communications and ranging. Mass and power savings are key 
benefits of selecting DD-PC implemented as a detector array with a field of view (FOV) that covers the range of point-ahead 
angles. This enables implementation of beam pointing, synchronization, commanding, high-rate data communications link and 
ranging with a single sensor (detector array and read-out circuitry). Nested within the synchronization pattern is a binary 
(M=2) PPM signal for the low rate commanding, with a laser pulse-width (slot-width) of 82 s and an equivalent guard-time 
to aid synchronization. Nested in this pulse the high-data rate signaling corresponding to a PPM modulation with an order 
M=16 and a slot-width of 128 ns. A Reed-Solomon (255,191) code was selected for the uplink due to its low complexity and 
ability to provide a low undetected error rate on the uplink channel. 
 
Laser Wavelength Trades. Besides link efficiency, transmit-receive-wavelength isolation at the FLT was an important 
wavelength selection consideration. The relative difficulty of obtaining high power 1550 nm lasers for uplink coupled with the 
availability of kWatt power level 1-micron lasers favors the choice of 1550 nm for downlink and 1030 nm for uplink to 
enhance transmit-receive wavelength isolation. For uplink wavelength selection, the availability and performance 
characteristics of uplink photon counting detectors were a major driver. Selection of the uplink laser beam divergence was 
driven by the requirement to ensure that the designed beam divergence can deliver the requisite mean irradiance to the DOT 
flight terminal aperture. A peak-to-peak beam pointing error of 16 rad, and an air mass corresponding to a 70 zenith angle 
were assumed. The selection was a beam divergence between 30-40 rad with 40 rad favored for strong to moderate 
atmospheric turbulence represented by r0 = 3 to 10 cm.  
 
The downlink budget is summarized in Figure 3 for a 22-cm flight terminal aperture and 4-W transmit laser power. Note the 
optical data-rate performance versus distance to Mars does not follow inverse square distance dependence, as does the Ka-
band because with increasing distance the SEP angles get smaller and the additive background noise penalty on the link 
throughput increases. 

Detec
-tion

Min/max 
slot-width

Modula-
tion

Sync 
Markers

ECC Data Rates

Downlink DD-PC
0.5 ns/ 
256 ns

PPM 16, 32, 
64, 128

25% 
guard-
time

R=1/3,1/2,
2/3 
SCPPM

13 kb/s, 57 
kb/s,…,267 Mb/s 
(26 points in ~1.5 
dB steps)

Uplink

Sync DD-PC 164 s
Square 
Wave

None None None

Command DD-PC 82 s PPM 2
100% 
guard-
time

R=191/25
5 Reed-
Solomon

9.0 b/s

Data DD-PC
128 ns/ 
16 s PPM 16

25% 
guard-
time

R=191/25
5 Reed-
Solomon

2.3,…,292 kb/s (7 
points in ~2.2 dB 
steps)
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planned. The backup option of a deep-depletion Si CCD with a separate channel for uplink data is possible, albeit with 
mass/power penalties resulting in a reduced uplink data rate (due to the higher detector noise of a linear mode detector). 

Aperture Configuration and Size.  Different optical antenna configurations and their relative impacts on transmit beam 
quality and near-sun-pointing performance and survival (with and without the use of a filter at the entrance aperture of the 
telescope), were evaluated.  Mass and manufacturability were estimated as a function of aperture size to trade against laser 
transmitter power required to achieve required downlink signal level and beacon detection efficiency. A 22-cm diameter off-
axis Gregorian telescope provided the highest combination of overall performance with the lowest mass for the FLT [Fig. 6]. 
The Gregorian field stop prevents secondary mirror thermal warping in near-Sun operations and strongly limits scattered light. 
A silicon carbide primary and structure was selected for lowest mass and superior thermal distortion characteristics. 
	

                                   

Fig. 6.  Schematic of the FLT 

3. GLR – GROUND LASER RECEIVER 
 

There are four major factors that drive the design of the GLR subsystem: 
	

1. Large net gain requirement: this demands the use of a large collecting area, as well as highly efficient optics and 
detectors for receiving the faint signal from deep space;  

2. Daytime and low SEP angle operations requirement: this is unusual for telescopes, which are typically designed to 
operate only at night (or in the case of solar telescopes, only while pointing directly at the Sun);  

3. Low rate of signal photons: the link operates in the photon-starved regime, which necessitates the use of efficient 
modulation and error-correcting codes to maximize the bits per photon [9]. This ultimately impacts the electronics 
used to receive and decode the downlink signal: and 

4. Low ratio of signal photons to background photons: the detected rate of background photons may exceed the rate of 
signal photons by as much as 18 dB during low SEP operations. This increases the difficulty of performing spatial 
and temporal acquisition of the signal. It also makes it necessary to precisely filter the incoming light to keep the 
background rate as low as possible while minimizing the loss of the signal photons. 

 
Taking into account optical losses, the required GLR telescope aperture gain of 142 dB for the high data-rate link translates to 
110 m2 aperture (11.8-m in diameter). Similarly, an aperture gain of 124 dB for the low data-rate link translates to a ground 
aperture of 3.8 m2 area (2.2 m in diameter). Table 2 compares the requirements on a ground telescope for lasercom with a 
typical astronomical telescope. These relaxed requirements on the lasercom telescope result in significantly lower cost for the 
lasercom telescope compared to an astronomical telescope of the same diameter. 
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4.0 GLT – GROUND LASER TRANSMITTER (GLT) 
 
The key driving GLT requirements are summarized in Table 3.  

Table 3. Uplink Transmit Beacon Requirements 
Requirement Comment 
Uplink power Power exiting system 
Number of beams For atmospheric fade reduction 
Beam Divergence Narrow beams to reduce required power 
Pointing accuracy Must meet this 99% of time 
Near Sun Angle Operate to within this angle of Solar Limb 
Beam Separation Beam edges must be at least this far apart 

 
The GLT must blanket the region of space surrounding the FLT with a uniform irradiance sufficient to reliably be seen by the 
FLT’s image sensor. Due to the extreme distance between the two terminals, meeting this requirement involves transmission 
of high levels of power (2.5 KW) in a narrow (40 rad), accurately pointed beam. To achieve this, the uplink stations must be 
able to blind-point the beam with an accuracy of 16 rad to limit the beam-pointing loss to an acceptable level. Multi-beam 
uplink is baselined to mitigate uplink atmosphere-induced fades by propagating at least 9 separate beams (or beam sets) each 
separated from all of the others by at least 10 cm.  

Uplink telescope. A single telescope, distributed (arrayed) telescopes, and flat-mirror beam directors are all capable of 
meeting the requirements stated above. The existing 1-m diameter coudé path OCTL telescope is favored based on 
availability, cost and complexity. This telescope has already demonstrated the required pointing, though it is expected that it 
will improve beyond its current accuracy with the implementation of certain planned upgrades.  

Uplink laser. The key laser requirements include: 1030 nm wavelength, 0.5 nm line-width and ±0.1nm wavelength tunability, 
2.5 kW average and 370 kW of peak power with M2 <1.2 beam quality, pulse repetition rates in the 4 to 500 kHz range, 128 ns 
pulse-width, random polarization, and 20 dB pulse extinction ratio. There are two candidate beacon laser options: (1) a set of 
single spatial mode 1030 nm fiber amplifiers for which CW power of about 250 Watts has been demonstrated, and (2) the 
planar waveguide amplifiers, where a single laser or a number of lasers can satisfy the requirements.  Depending on the chosen 
candidate laser system, some minor level development is expected to demonstrate the aggregate set of laser requirements. 

5. CONCLUSION 

A pair of flight and ground terminals were conceptually designed to meet the Level 1 requirements, enabling downlink 
transmission of over 0.25 Gb/s from the short distance to Mars while estimated flight terminal mass power are comparable to 
the state of practice of existing Mars spacecraft telecommunication systems. Currently, the highest risk items are the 
technology maturity of the flight isolation platform, the flight laser, and the flight and the ground single photon-sensitive data 
detectors.  These specific technologies are now being addressed in a focused technology development program.  
Accomplishing the highest data-rates requires use of the Large Binocular Telescope with its effective aperture diameter of 
11.8 m.  Demonstrating operations at small Sun angles necessitates development of a dedicated telescope with minimum 
aperture diameter of 2.2 m.  
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